



Deutscher Bundestag

Ausschuss f. Verkehr, Bau und Stadtentwicklung

Ausschussdrucksache

17(15)464-C

Sitzung am 07.11.2012

Institut für Land- und Seeverkehr Fachgebiet Schienenfahrzeuge Prof. Dr.-Ing. Markus Hecht

# Anhörung Bundestag zu Änderung Bundesimmissionsschutzgesetz

Prof. Dr.-Ing. Markus Hecht
TU - Berlin / FG Schienenfahrzeuge
Salzufer 17-19 / Sekr. SG 14, D-10587 Berlin

www.schienenfzg.tu-berlin.de markus.hecht@tu-berlin.de





#### **Schienenbonus**

abzuschaffen ist richtig,

aber





#### aber:

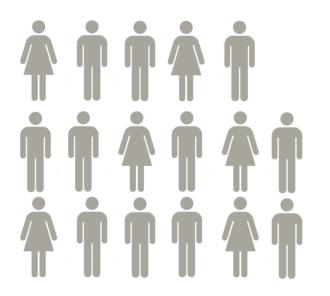
- a) genügt nicht, da Altstrecken nicht erfasst
- b) schädigt den Neubau von Bahnstrecken, da unnötig teuer
- c) erhöht die Instandhaltungskosten und bringt die Bürger auf, wegen optischer Störung und Isolationswirkung

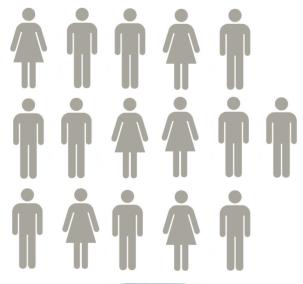




## Lösung:

Bahnlärm generell, auch auf Alt-


strecken, mindern und effizientere


Maßnahmen nutzen





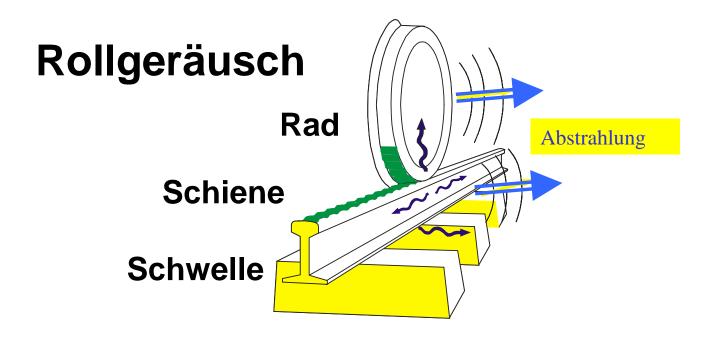
# Betroffene durch Verkehrslärm in der Nacht >50 dB(A) in Deutschland







3,8 Mio




0,26 Mio

Quelle: Umweltbundesamt Lärmbilanz 2010, Seite 4







Probleme: Lärmgrenzwerte für die lautesten Elemente (Schienen und Schwellen) fehlen völlig!!!!!





# Problem heute: 25 bis 30 dB Grenzwertüberschreitung auf stark befahrenen Altstrecken (= Bestandsstrecken)



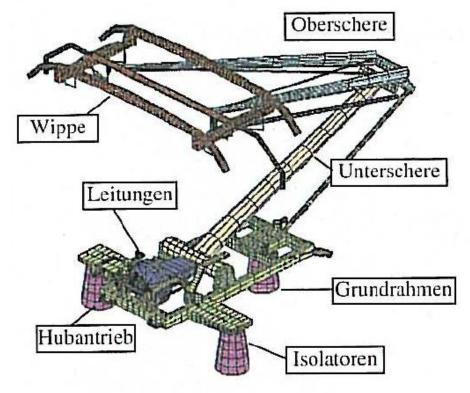


#### **Ergebnis EU-STAIRRS Projekt:**

Lärmminderung an der Quelle kostet nur 30% der Maßnahmen am Ausbreitungsweg

STAIRRS: Strategies and Tools to Assess and Implement noise Reducing measures for Railway Systems






Problem: Leise Technologien an der Quelle werden in Europa und besonders Deutschland nicht verwendet

3 Beispiele: Stromabnehmer Gleisbaumaschinen Gleise







Optimierungsstufe 0

Konventioneller Stromabnehmer

# Stromabnehmer nach TSI

Europa: keinerlei akustische Anforderungen

starke Wirbelbildung, starke Strömungsgeräusche





#### **Stromabnehmer Japan:** Strömungsgeräusch – 25 dB zu Europa



Shinkansen (High-speed Train) Application

| Method                  | Raised pneumatically, spring-lowering |  |  |
|-------------------------|---------------------------------------|--|--|
| Line voltage            | 25 kV AC/20 kV AC                     |  |  |
| Collector current       | 500 A                                 |  |  |
| Lifting force           | 54 N                                  |  |  |
| Range of working height | 500 to 1000 mm                        |  |  |
| Weight                  | 180 kg                                |  |  |

Prospekt Toyo Denki Seizo k.K. 2012

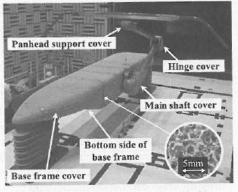



Fig. 2.2. Pantograph of high speed trains with porous metal

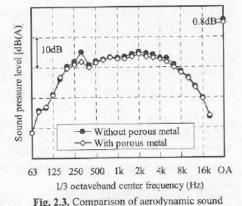



Fig. 2.3. Comparison of aerodynamic sound from pantographs

10th International Workshop on **Railway Noise** Nagahama ,Japan Oct 2010, p. 435







▲ B 20-75 C Railway Technology Co.,Ltd (Japan)

Europäische Gleisbaumaschine (Stopfmaschine) für Japan – 12 dB gegenüber europäischer Maschine für Europa







B 20-75 C Collazo (Spanien)

Dieselbe Maschine (laute Version) für Europa





# Problem Lärmminderung bei den Bahnen an der Quelle in D und Europa heute:

Notwendigkeit wird erkannt, aber nur soweit durchgeführt wie keine Einschränkungen an anderen Funktionen auftreten und keine Kosten entstehen





## Weiteres Problem Deutschland: Neubauinvestitionen werden voll bezuschusst (BSchwAG §8)

Instandhaltungskosten muss DB Netze selbst tragen.

dies führt zu sehr lauten Gleisen





EN ISO 3095:2005 (D)

#### Anhang D

Tabelle D.1 — Parameter mit maßgeblichem Einfluss auf das Gleisgeräusch

| Parameter                                               | Wert des Parameters, der zum kleinsten erzeugten Geräuschpegel führt | Wert des Parameters, der zum größten erzeugten Geräuschpegel führt | Pegeldifferenz, die sich aus dem<br>Unterschied der Einflüsse zwischen<br>den Werten des Parameters für den<br>kleinsten und für den größten<br>erzeugten Geräuschpegel ergibt<br>dB |
|---------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schienentyp                                             | UIC 54 E1                                                            | UIC 60 E1                                                          | 0,7 dB                                                                                                                                                                               |
| Statische Steifigkeit der<br>Schienenzwischenlage       | 5 000 MN/m                                                           | 100 MN/m                                                           | 5,9 dB                                                                                                                                                                               |
| Verlustfaktor der Schienen-<br>zwischenlage             | 0,5                                                                  | 0,1                                                                | 2,6 dB                                                                                                                                                                               |
| Schwellentyp                                            | "Bi-Block"                                                           | Holz                                                               | 3,1 dB                                                                                                                                                                               |
| Schwellenabstand                                        | 0,4 m                                                                | 0,8 m                                                              | 1,2 dB -                                                                                                                                                                             |
| Schottersteifigkeit                                     | 100 MN/m                                                             | 30 MN/m                                                            | 0,2 dB —                                                                                                                                                                             |
| Schotterverlustfaktor                                   | 2,0                                                                  | 0,5                                                                | 0,2 dB —                                                                                                                                                                             |
| Radversatz                                              | 0 m                                                                  | 0,01 m                                                             | 0,2 dB —                                                                                                                                                                             |
| Schienenversatz                                         | 0 m                                                                  | 0,01 m                                                             | 1,3 dB —                                                                                                                                                                             |
| Radrauheit                                              | glattester Fall                                                      | rauester Fall                                                      | 8,5 dB —                                                                                                                                                                             |
| Rauheit von Schienen, die frei von<br>Unebenheiten sind | glattester Fall                                                      | rauester Fall                                                      | 0,7 dB bis 3,9 dB                                                                                                                                                                    |
| Zuggeschwindigkeit                                      | 80 km/h                                                              | 160 km/h                                                           | 9,4 dB —                                                                                                                                                                             |
| Achslast                                                | 25 t                                                                 | 10 t                                                               | 1,1 dB                                                                                                                                                                               |
| Lufttemperatur                                          | 10°C                                                                 | 30°C                                                               | 0,2 dB -                                                                                                                                                                             |

v nutrbar

- nicht nutibar oder bereits gen utzt





# Lärmmonitoringstationen sind zur Diskussionsobjektivierung dringend nötig, Beispiel Schweiz seit 2003:



Messcontainer



Außenmikrofon



Achszähler

Quelle für Bilder BAFU Bern, Schweiz





## Beispiel Monitoring Lärmminderungsmaßnahmen CH 2003-2010 mit voll transparentem Ergebniszugang im Internet für jedermann

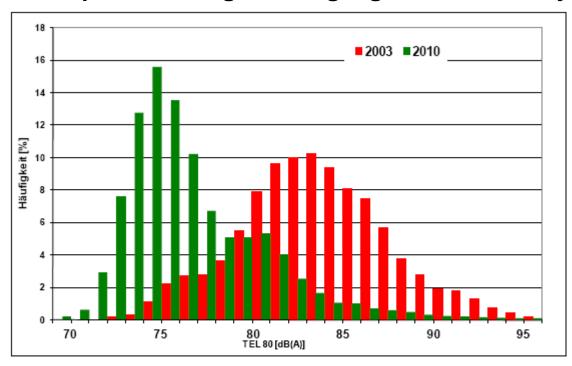



Abb. 11: Steinen (Gleis 115), Häufigkeitsverteilungen TEL 80 der Personenzüge in den Jahren 2003 und 2010

Quelle Jahresbericht Monitoring Eisenbahnlärm 2010, BAV, Bern





### Zusammenfassung

Abschaffung Schienenbonus und zur Kostensenkung

- a) Lärmminderung an der Quelle statt am Ausbreitungsweg und
- b) mit anderen Bahnthemen kombiniert behandeln:

Lärmminderung Altstrecken+ Monitoringstationen+.....